图像分类在在线持续学习的研究
Online continual learning for image classification studies the problem of learning to classify images from an online stream of data and tasks, where tasks may include **new classes (class incremental)** or **data nonstationarity (domain incremental)**. One of the key challenges of continual learning is to avoid catastrophic forgetting (CF), i.e., forgetting old tasks in the presence of more recent tasks. Over the past few years, a large range of methods and tricks have been introduced to address the continual learning problem, but many have not been fairly and systematically compared under a variety of realistic and practical settings.
任务:new classes(类增量)、data nonstrationarity(域增量) 持续学习的关键:避免灾难性遗忘(在出现较新任务时忘记旧的任务)
To better understand the relative advantages of various approaches and the settings where they work best, this survey aims to (1) compare state-of-the-art methods such as **Maximally Interfered Retrieval (MIR), iCaRL, and GDumb** (a very strong baseline) and determine which works best at different memory and data settings as well as better understand the key source of CF; (2) determine if the best online class incremental methods are also competitive in the domain incremental setting; and (3) evaluate the performance of 7 simple but effective tricks such as the “review” trick and the nearest class mean (NCM) classifier to assess their relative impact.
当memory shuffle很小时,iCaRL有竞争力 在medium-size数据集上,GDumb优于很多提出的方法 在large-scale数据集上,MIR表现最好
GDumb表现糟糕 MIR在这种持续学习下具有很强的竞争力
所有技巧都有益 当用"review" trick和NCM时,MIR的性能水平使online continual learning更接近其匹配离线训练的目标
传统深度学习关注离线训练,每个mini-batch都是从静态数据集中进行iid采样 缺点:为适应数据分布的变化,需要在新的数据集上完全重新训练网络 → 低效,数据由于存储限制或隐私不可用
持续学习关注从non-iid数据中学习,保存和拓展所获得的知识 保存过去的知识,对新知识的快速适应 → 在稳定性和可塑性之间寻找平衡
先前的持续学习:多头评估(为每个任务分配一个单独的输出层) 缺点:需要额外的监督信号(task label);所有数据存储在内存中进行训练
提出了(1)Online Class Incremental, OCI 在线类增量;(2)Online Domain Incremental, ODI 在线域增量 和任务增量设置的区别:(1)采用single-head单头评价 (2)模型在线处理:multiple epoches和repear shuffles对于确保iid条件不可行
当memory shuffle很小时,iCaRL有效 当mediun-size dataset,GDumb是strong baseline 当larger-scale dataset,MIR表现最好 灾难性遗忘的关键原因:由于先前数据和新数据之间的不平衡,导致最近学习偏向最后一个fc中的新类